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ABSTRACT 
/ 4 7 6  

Electron densityheight profiles in the ionosphere can be 

obtained f r o m  virtual height-frequency records  by solving an integral  

equation. A new method of solution is presented,  using an i terat ive 

minimization scheme where the independent variable is the t rue  height, 

h,  r a the r  than the plasma frequency, fN. 

that the method is not res t r ic ted  to monotonic functions, fN(h) ,  and 

can be used fo r  distributions with a "valley". 

varying parameters  can be used, such a s  the gyrofrequency, whose 

variations with altitude is  important for the upper F region, above 

the electron peak. 

This has  the advantage 

In addition, other height 

An improved solution is given for  the case  where no data a r e  

available below a cer ta in  frequency, f 

mos t  available techniques, since no par t icular  model need be 

This is m o r e  general  than min'  

assumed for  the underlying ionization. 

The uniqueness of the solutions which combine data f r o m  the 

ordinary and extraordinary r ays  f o r  l imited frequency ranges is  

discussed,  and suggestions a r e  given for  the solution of the valley 

problem. 
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I. INTRODUCTION 

A .  General Statement of the Problem 

A widely used method of investigating the structure of the 

ionosphere consists of transmitting a radio pulse of mean frequency, 

f ,  vertically upwards, which is received again on the ground af ter  

reflection .in the ionosphere. One measures  the time interval,  T , 

between the transmitted and received pulses and defines the quantity 

"virtual height", h ' ,  where h '  _= - , and c is the f r ee  space velocity 2 

of light. If the t ime interval,  T , is measured for a continuous range 

C T  

of frequencies, then one may plot the virtual height, h ' ,  a s  a function 

of f .  The resultant curve is termed an  "h'-f curve" o r  ionogram. 

We shal l  only be concerned with frequencies ranging f rom one to 

twenty-five megacycles pe r  second, and shall  consequently adopt the 

approach of geometrical  ray-optics. 

the validity of ray-optics and shown that the difference between ray 

Rydbeck (1 942a) has investigated 

optics and a full wave treatment is of little practical  importance for  the 

regular ionospheric layers  (the normal E and F regions). We shall  

assume that the influence of collisions may  be neglected, which is 

permissible  i f  the collision frequency is much l e s s  than the wave 

frequency, i. e .  f 2 1 . 0  mc  f o r  heights above 150 km.  T is given 

by: 

where h is the height measured vertically f r o m  the ear th ' s  surface,  

h is the height of reflection, and V is the group velocity. 
R g 
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C If p '  5 , where p,' i s  the group refractive index, 
g 

hR 
h' = p,' dh 

The expression for p' has been derived by Appleton and Har t ree ,  who 

have shown that p,' is a function of the plasma frequency, fN(h), the 

gyro-frequency, fH(h), the dip angle, 8 , and the wave frequency, f .  

@R 
h'(f) = S_ p '  (fpq(h) J fH(h), e , f )  dh 

Since the ionosphere i s ' a n  anisotropic medium, a radio pulse 

which impinges vertically on the ionosphere is  split into two compo- 

nents,  with different polarizations and group velocities , which we 

shall  call the ordinary and extraordinary modes,  i. e .  

where the ordinary mode is designated by 

fH(h)J J f ,  dh 

fH(h), e J f ,  dh 

the subscript  o 

(1.-1) 

(1. 2) 

and the 

extraordinary mode by the subscript  x .  

Equation (1. 1) and equation (1. 2) a r e  non-linear singular 

The problem is to Volterra integral  equations of the first kind. 

determine under what conditions equation (1. I )  and equation (1. 2) 

uniquely specify the plasma frequency as a function of height, fN(h);  

and, providing that these restr ic t ions a r e  satisfied to determine what 

numerical  techniques , which a r e  compatible with reasonable physical 
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assumptions, a r e  available for  inverting these equations. 

B. Origin and Importance of the Problem 

Many countries of the world maintain a number of field stations 

which have been engaged f o r  many years  in taking h'-f records  at  

intervals of one hour o r  less .  

which takes h'-f records of the "topside" of the ionosphere. 

determination of electron densities f rom h'-f records  is important 

because of the relative ease with which ionograms a r e  obtained and 

their  low cost a s  compared to direct probe methods for  comparable 

amounts of data. 

Recently a satellite has  been orbited 

The 

C.  Previous Solutions 

Equation (1. 1 and equation (1. 2) were derived in  the 1930's )i 
and since then a number of techniques have been devised f o r  inverting 

these equations. Several  excellent summar ies  of these methods have 

been compiled, among them Schmerling (1957) and Thomas (1957). We 

shall  therefore neglect the details of the various methods, but shall 

concentrate our attention on the assumptions, the rationale behind the 

assumptions,  and the limitations of the assumptions in severa l  of the 

m o r e  successful recent techniques, Since the equations a r e  non-linear 

in plasma frequency, one naturally seeks physically reasonable assump- 

tions which allow one to l inearize the equations, and, if possible, 

invert  them in closed form.  

F o r  a large number of cases ,  i. e .  the majority of ionograms 

obtained a t  night, the ionosphere may be approximated by a single 

layer .  The plasma frequency, f (h) is then a monotonic function of N i  
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height, and the inverse function h(f ) exis t s .  

dh 
dfN the equivalent problem of determining 

One can now consider 

f r o m  the system: 

N 

fR  
o o  

dh f )  - dfN 
df N 

dh 
1 -  df N df N 

(1.4 

We now have a sys tem of equations l inear  in - dh but the 
dfN 

kernels p' 

directly.  

simplifies and the equations can be analytically inverted. 

and p.' a r e  s t i l l  too complicated to invert  the equations 
0 x 

There a r e ,  however, a few special cases  where the kernel  

If the ear th ' s  magnetic field is neglected, the ionosphere 

loses  i ts  bi-refringent property and only one mode of propagation, the 

ordinary, i s  possible, where p' = d l  - f G / f 2  
0 

f, 

where the plasma 

P;, a n d f R  = f .  

equation (1 .5 )  may be inverted, since this i s  mere ly  a f o r m  of Abel's 

integral equation. 

frequency of reflection, f R  , is  given by the pole of 
0 

Appleton (1930) and de Groot (1930) showed that 
0 

The solution is given by 

c 

IN h ' ( f )  df 
h(f ) = 2 IT lo 

df& - f 2  
N 

This also holds fo r  the ordinary ray at  the magnetic equator, but is a 
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, 

poor approximation elsewhere on the ear th  a s  shown by Shinn and 

Whale (1 952). 

F o r  propagation along a magnetic field line (magnetic poles), 

1 1 1 

we have p 

p; = af (f po) 

= (1 - f2 /fz )" and px = (1 - f&/f&)' . In general  
0 N R  

a a - and pk - af (f p,). Where fk = f ( f  t f H } and 
w 

f 2  = f ( f  - f ) .  R H 

1 dh 
df N 

- (f [ 1 - f y f k l "  1 - 
dfN 

h '  ( f )  = 
0 

1 

dh 
hk ( f )  = af df N 

Rydbeck (1942b) has  shown how equation (1. 7) and equation (1.8)  may be 

inverted analytically. 

Another approximation i s  usually made, which i s  l e s s  stringent 

than either of the previous two approximations. This is that fH(h)  is a 

constant equal to the value of f 

(usually 100 km) .  

be considered is roughly 100 k m  to 300 km,  in which range the gyro- 

frequency, , varies  by only 370, this assumption is quite good. But 

for  topside soundings, where the height range is typically 1000 km to 

300 km,  the variation is about 20% and the assumption is poor. One 

at some suitably chosen height H 

F o r  bottomside soundings where the height range to 

fH 

now has l inear integral  equations whose kerne ls ,  p1 and p 1  a r e  
0 x '  

'Budden, K. G.  Radio Waves in  the Ionosphere, Cambridge ---- 
University P r e s s ,  1961. 
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complicated yet known functions of f&,  f ,  f H ,  and 8 .  

complexity of the kernels  one cannot invert the integral  equations 

Due to the 

directly, but one can derive an infinite set  of l inear equations whose 

unknowns, c satisfy the following i’ 

where 4 is an a rb i t r a ry  function of f N ,  e .  g .  f N ,  f Z  o r  log f N .  

is a standard technique fo r  solving l inear  integral equations. 

This 

This 

approach has been adopted by Titheridge (1961) and Unz (1961). A 

similar  attack, in  that one reduces the l inear integral equations to a 

system of linear algebraic equations, has  been given by Budden (1954), 

Paul (1960), Doupnik (1963), and Paul and Wright (1963). In their  

is approximated over successive intervals of plasma dh approach, - 

frequency, a s  compared to the fo rmer  approach where one approxi- 
df N 

mation is used f o r  the complete layer .  Both, of course,  approximate 

the infinite se t  of equations by a finite s e t  of equations. 

The above methods have been singled out because they a r e  in 

wide use a t  the present.  They a l l  implicitly o r  explicitly make the 

following assumptions: 

(a) 

(b) fH(h) is constant. 

fN(h) is a monotonic function of h 

( e )  If hb(f) and hk(f) a r e  unobserved for  f f min’ NfN) 
can still be uniquely determined for  f 2 fmin by judiciously 

‘Kunz, K. S .  Numerical Analysis, McGraw-Hill, 1957 
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combining ordinary and extraordinary virtual heights 

min' above f 

(d) If fN(h) is a non-monotonic function of h, one can de ter -  

mine the monotonic distribution over cer ta in  ranges of 

heights by combining the ordinary and extraordinary 

vir tual  heights above f in the manner used in  (c).  min 

D. Specific Statement of the Problem 

The conditions for  a unique specification of f (h) (which is N 
proportional to d electron density) a r e  to be determined. 

these cnnditiom a x n e t h d  is to be devehped for obtainmg d e c t r o n  

Under 

. .  

density profiles f r o m  ionograms. 

This method consists .of minimizing the squared differences 

between the observed and calculated vir tual  heights for a given 

model. 

This method should be applicable to "topside" and "bottomside " 

ionograms and, consequently, provision must  be made for  non- 

monotonic and monotonic electron density distributions,  a s  well a s  

the variation of gyro -frequency with height. 
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11. THEORETICAL CONSIDERATIONS AND DISCUSSION 

A .  Conditions Necessary f o r  Uniqueness 

Because of equipment limitations, ground based stations do not 

record  virtual heights fo r  frequencies below one o r  two megacycles 

pe r  second. The ! ' s tar t ' '  o r  "low-frequency cut-off" problem consists 

of inverting the given system of integral equations when h '  (f)  and 

h '  (f)  a r e  unobserved for  f l e s s  than some minimum frequency, f 

If more than one layer is present,  we say that the electron density 

profile has a "valley". 

non-qonotonie function of h .  

0 

X min'  

A "valley" is present  whenever f (h) is a N 

Let us assume initially that f = 0, a condition never m e t  in min 

practice. It should be noted that,  iffmin is quite small ,  then the 

hb(f) and h '  (f) curves may be extrapolated f rom f 
X min 

and the standard reduction techniques can be applied. 

to f equals zero 

The 

following argument concerns itself with the many instances where 

extrapolation of the h'-f curves i s  an uncertain and r isky business.  

o or h'-f curves can be extrapolated and f (h) Therefore, i f  f 

is a monotonic function of h,  then either equation (1. 3 )  o r  equation 

N min 

1 
1 

and hence fN(h); and any of the dh (1.4)  uniquely determines - 
df N 

techniques mentioned ear l ie r  a r e  applicable for  bottomside 

tion. 

the variation of f with h .  Doupnik ( 1 9 6 3 )  and Wright (1963,  personal 

communication) have made some progress  in this a r ea .  

h'-f reduc- 

For topside redaction the methods must  be modified to include 

H 

'Lovitt, W .  V. Linear Integral  Equations, Dover Publications, 
Inc . ,  1950. 
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Now suppose fmin > 0. Ther o m  can show that one mode alone 

cannot uniquely specify the electron density profile. 

(personal communication) demonstrates this in the following manner: 

consider an h'-f record which has  an f > 0. For only the min 

ordinary mode, one can draw a number of physically reasonable 

hb(f) curves  below fmin. If each complete hb(f) i s  now reduced, a 

number of different f (h) profiles will  resul t ,  all of which have the 

same ordinary virtual heights above f The ref ore ,  numerically 

inverting equation (1. 5) by using hb(f) points above fmin alone cannot 

uniquely specify the distribution which produced them; since there  a r e  

many distributions which will give them. A special case of interest  is 

Schmerling 

N 

min . 

that for  fH = o and a monotonic layer 

f dh/df, 
hb(f) = lo p---y d f N  

f - f N  

which can be inverted to give 

h ' ( f )  df 
0 

min h'  (f) df 
0 

N 

lT 
2 0 

N 

h(fN) = 7 

Equation (2.2) is an analytical statement of Schmerling's proof, where 
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the subscript j designates the different electron density profiles 

resulting f rom choosing different h '  ( f )  curves  below f min and keeping 

the same h '  (f)  curve above f . Several workers,  notably Titheridge 

(1959), Paul and Wright (1963), Storey (1959) and Doupnik (1963), have 

suggested that one can determine the profile above f min by using both 

hL(f) and the h '  ( f )  curves .  

exists only one electron density profile which can produce the same 

hL(f) and htX(f) above fmin. 

tidinal propagation, 8 

their a s  sumption may be justified. 

0 

0 min 

The implied assumption is that there  
X 

We shall show that,  in the case  of longi- 

= 0 , this assumption is fa lse ,  but in  general  0 

Consider the following: 

8 = 0 ,  (longitudinal propagation) 

- 
exists, fH  = constant, f 2  = f ( f  t f ), fk = f ( f  - f H )  then dh 

R H 
df N 

- f &  /fk)')= 1 dfN 

dfN 
h '  ( f )  = 

0 

df N 
a dh 

Unz (1960) has  shown that J r a f  (f p}% 



- 11 - 

s imi la r ly  
1 -  

Jf" - f  f 
1 f 1 1 H  

I 
dh df ]df 

2 2  f hk(fl)df 1 = ( l - f N / ( f l  - f l fH) ] r  N 
H H 1  

J 
2 
_- X 

Let us  define G(x) i lo [ l -y]  fi dfN 

then 

and 

f 

f 1 hh( f l )d f l  = G(fR(f))  

f 
1 - h' (f )df = G ('Ref)) 
f X I 1  

fH 

-fH t 7 f H t 4 f R  

2 f = f =  
1 

2 1 h' (f )df 

H 1 

0 1  1 
G(fR) = 

- f H t  7 f + 4 f R  f = o  
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2 a h '  (f )df G(TR) = 0 1 1  
+ 

d 

-fH +df% t 4?& f =o 
1 

fHtJ f L  t 4F& 

2 
f = f =  

f P1  
1 

1 
2 h '  (f  ) df 

r 1 
But G(? ) = -  h ' ( f  )df = X I  R f j f  x i  1 

H f H  t J fH 

f H t  d f& t 4T& 
f =  

1 

e 1 r ~ h '  (f )df 
x 1  1 3 

f H t  d f& t 4Tg L l  =fH 

i f  we now let  

;+-rid -2f = f t H 

E =  

-fH t J g T q  
2 

f =  
-1 a 

-fH t d f &  t 4 T k  f I =o 
hb (f 1 ) df 1 

1 - - 
d 

f H  t d f& t 4 'k  
-2 then f - fH - 2 

- f H  t d f k  t 4'k 
- 

h'(f  )df 
0 1  1 

Taking the derivative of both s ides  with respect  to f 
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N 

= f  min - f~ min F o r f  2 f 

N 

f 

h ' ( f  )df t 
0 1  1 

hk(f) = - h' (f - fH) - f - f H  0 

f f-fH hb (f - fH) - fH 

f - f H  

{ A  t 1 h'(f  ) df } 
0 1  1 

rJ 

min - f~ 

f 

where A = ) 

observed down to some f 

h ' ( f  ) df and the ordinary curve is 
0 1  1 

0 

and = f  t f H  ~ min min min 

This equation s ta tes  that one extraordinary point and the hb(f) 

curve above f determine the h' (f) curve above f . The min X min 

above equation also s ta tes  that a t  the poles ionograms having hb(f) 

curves  such that 
ru 

min - f~ 

f 

hb (f )df 
1 1  

1 

will have the same 

N 

min - f~ 

f 
n 

min h '  (f )df and h '  (f) = hb (f) for  f 2 f  
0 

1 2 
0 1 1  

2 

hk(f) curves  f o r  f 2 fmin. Therefore,  a number of 
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different electron density profiles will produce the same h '  ( f )  curves 

above fmin. Adding the hk ( f )  curve has  limited the number of curves 

one can draw below f (to use Schmerling's argument), but i t  has  

not reduced the number to one curve.  Off the poles this derivation 

0 

min 

obviously breaks down, and a s  Wright (personal communication) has 

pointed out ,  in practice,  even close to the poles, one observes the 

rays  reflected f rom X = 1 and X = 1 - Y ,  ra ther  than X = 1 t Y (some- 

t imes called the z- t race)  and X = 1 - Y  (sometimes called the x- t race) .  

Under these conditions there does not seem to be a proof s imi la r  to 

the one presented which implies that the ordinary r ay  (X = 1, reflection 

condition) and the extraordinary r ay  (X = 1 - Y ,  reflection condition) 

contain exactly the same information. Wright a lso pointed out that 

model studies done by his group indicate that, a t  a particular 

latitude, p !  

in general, of course,  this is not t rue.  The case  at  the poles seems  

and p'  a r e  approximately proportional to each other;  but 
0 X 

to be similar !-n the sense that here  again nothing new i s  added by 

considering the z- t race and x- t race  together. 

Since, in general ,  p '  i s  not proportional to p '  we will 

assume,  pending more  detailed studies, that the hb(f) and h '  ( f )  curves 

do uniquely specify the profile above f We will therefore present  

a solution to the "start" problem in 11-D based on an idea suggested by 

Titheridge (1 959)" 

0 x '  

X 

min'  

B. Minimization Techniques 

The technique which we wish to apply is an i terative one where 

a certain quantity i s  minimized. Therefore,  we shall  f i r s t  discuss 
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minimization techniques in  general. 

Most of the useful methods for  obtaining an approximate real  

solution of a r ea l  non-linear equation, of the fo rm f(xr = 0, involve 

i terative processes  in which an  init ial  approximation z 

real root x = CY is obtained, by rough graphical methods o r  otherwise, 

to a desired 
0 

and a sequence of numbers zo, z , z , . . . is generated which 

converge to a limit a .  
1 . 2  

The process is based upon the development 

of a recursion formula for  z in t e r m s  of z so  that z may be 

calculated af ter  z. is known. The equation y = f(x, a ,  b, c )  can be 

cas t  into the above form,  where we wish to determine the parameters  

i+ 1 i' i t 1  

1 

a ,  b, and c such that this formula is to be a good f i t  to the data 
m 

I (xi, yi), (i = 1, . . . , m) and G(a, b, c)  = yi - f(xi, a ,  b, c ) ) ' .  
1 

If the observed experimental values exactly satisfy the assumed 

functional form,  f ,  and there  i s  no noise in the data,  then there 

exists an a ' ,  b ' ,  and c '  such that G(a' ,  b ' ,  c ' )  = 0. In general ,  our 

functional fo rm will only approximate the "real" function, and the 

experimental data will be noisy; we therefore seek an a ,  b, and c 

which will minimize G.  Since G is usually a non-linear function of 

a ,  b ,  and c ,  iterative techniques a r e  suitable. The three most 

commonly used techniques a r e  the (1) gr id  search,  (2) gradient, (3)  

method of differential correction. ( 3 )  is commonly called "least 

squares", which is somewhat confusing, since al l  th ree  methods a r e  

based on minimizing G (the sum of the squared residuals).  

have therefore adopted the nomenclature of Nielsen . A brief 

We 

1 

1 
Nielsen, Methods - in Numerical Analysis, MacMillan, 1961, 
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1 description of methods (1) and (2)  is given inKunz . Method (3) will be 

explained in detail,  since it is the technique which we applied to invert  

the integral equations. The following derivation was taken f r o m  

Nielsen 

C. Reduction of Virtual Heights to True Heights 

= 0 ,  o r  that the h'(f) curve can be min We he re  assume f 

extrapolated to f = 0 ,  and therefore we need consider only one mode, 

the ordinary 

2 
hR 

I O  

r 
h ' ( f )  = p'(fN(h),  fH(h), 8,  f )  dh (2 .  3 )  

Here the subscript  o has  been suppressed. p'  is now 

Assume now a 
2 

expressed a s  a function of f (h) for  convenience. N 
2 2 

functional fo rm for f (h) = f N ( A  , A , . . . A n ,  h) where the Ai  a r e  
N 1 2 

undetermined pa rame te r s .  One can then determine the parameters  

in the following manner: 

At the height of reflection (for the ordinary mode) 

2 2 
f N  = f 2  + f 2  = f N  (A , A  , . . . , A n ,  hR) - - F ( f 2 ,  hR) = o 

1 2  
2 

where F(f2,  hR) c f 2  - f N  ( A l ,  A , . , , A n ,  hR) and we assume that 

F ( f 2 ,  h ) defines a unique implicit function, i .  e .  h 
2 

= hR(A , A , R R 1 2  

An,  f 2 ) .  

h=h (A , . . . , A , , f * )  
P 

h '  = h ' ( f )  = I(A , A  : . . . , A n ,  f ) E J  
2 

R 1  

p '  ( f ,  fH(h),8, f N ( A  , A , . A n , h))dh 
1 2  1 2  

h=o 

h '  = I(A , A  , . . . , A n ,  f )  ( 2 . 4 )  
1 2  

Kunz. 
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Here  I is, in general ,  a non-linear function of the A and equation i' 

( 2 . 4 )  is to be a good f i t  to the data  (f h!) for  j = 1, . . . , m.  The 
j '  J 

res iduals ,  R a r e  then given by: 
j '  

R = I(A , . . . ,  An' f l )  - h'  
1 1 1 

R = I(A , . . . ,  An, f ) - h'  
2 1 2 2 

. . . . . . . . . . . . . . . . . . . .  

R = I(A , . . . ,  An' fm) - h' m 1 m 

where h! a r e  the observed experimental values. 

initial approximation of the parameters  A 

number of different ways may be used to make these initial "guesses", 

We now make an  

A 
J 

and call  them oA 
i' i ' 

some of which will be discussed la te r .  We seek to determine 

corrections, c .  ,to these approximate constants such that the cor rec ted  

constants will better f i t  the data. 

by Ai, we have 

1 

Denoting the cor rec ted  constants 

' A i  = 0Ai + ci ( 2 . 5 )  

then R = I(A , . . . , An, f j )  - hj  j = 1 ,  . . . ,  m 
j 1 

R. = I(oA t c l ,  . . . , 0An t cn, fj) - h; 
J 1 

R. t h' = I(oA 

L.H.S.  = R.H.S. 

t c , . .  . ,  oAn t cn, f j )  
J j  1 1 

Expanding the R. H. S. by Taylor 's  theorem for  a function of s eve ra l  

var iables  about the initial approximations, i =n 
a I. 

I(oA + c l ,  , . , , oAn + c , f . )  = I(oA , . . . , oAn, f.) t 
I n J  1 J 

i= 1 
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t higher o rde r  t e r m s  in c i 

a I. 

a A i  0 J 
evaluated at  where (A ) =- the par t ia l  derivative aA. 

Ai = oA. 1 (i = 1 , .  , . ,m)  

Defining oh! = I(oA , . . , , oAn, f . )  a s  the first approximation to the 

observed values,  h '  , 

J 1 J 

I.= I(oA 1 , . . . , oAn, f j )  
j J 

where we have neglected higher order  t e r m s  in c i ' which is valid i f  

the c. a re  "small". 

Finally R = 

1 

(%)o  ci t r j  where r = oh' - h '  
j j j  J 

i = 1  

G(c , . . , , c n )  - - f R 2  j 
1 

j = l  

A necessary condition f o r  G to be a minimum with respect  to the c .  1 is 

Equation ( 2 . 5 )  gives r i s e  to the so  called ''norrnal'l equations 

( 2 . 7 )  

= o  
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. . . . . . . . . . . . . . . . . . . . . . . . . .  

The normal  equations a r e  then: 

m a I. a I. a I. 

(d), 1 ( d i ] O  c i  + j=1 1 ( d ) o  1 r j  = 0 

a I. m 

2 (di)o c i  + j= l  1 (dJ, 2 r j -  = 0 

a I. 

. . . . . . . . . . . . . . . . . . . . . . .  

We now have n l inear equations with n unknowns, c..  1 Having 

determined the c .  f rom the normal equations, we can then determine 

the 'Ai f rom equation (2.5) .  

values, and the whole procedure repeated until n - lA. /nAi  1 is l e s s  than 

some predetermined delta (convergence cr i ter ion The nAi a r e  the 

"best" layer  constants for the assumed functional f o r m  in the least  

1 

The 1A. can then be used as approximate 
J 
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squares sense.  Inspecting the normal  equations, we see  that the 

coefficients of the ci a r e  sums over the partial  derivatives of 

f )  with respect to the A We shall  now derive the i '  I (A  9 * '  * 9 An, 
1 

expressions for these partial  derivatives.  

To simplify mat te rs  we shall consider a one parameter  model, 

i . e .  fN(h) = g(A,h) . 
hR(A, f )  

(2 .8 )  Then I(f, A )  = f ,  g (A ,h ) ,  e) dh * 

Jo 

Also let  g(A, h) be a monotonic function of h (this res t r ic t ion 

will be removed la te r ) .  Then 

dh d Pt(fH, f ,  fpJ, dfN dfN 
- I(f, A)  = 

dfH = S ( A ,  f N )  and - = o dh 
TN dh where 

f 

dfN; let  f N  = f s in  + dh 

T I 2  

( + I  d+ 
dh 

f p t ( fH,f ,  s in  +,  8) cos + - 
dfN 

It can be shown that lim p'  cos - where 8 is the geomagnetic -m' 
dip angle d)-Tr/2 

(SchmerlingT1957) equation 4. 20).  This limit exists for  every 8 f 0. 

The function H(f, + ) E  p t  cos + i s  undefined at  the upper limit, ~ / 2 .  We 
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1 
therefore  define it to be 5 6  , i. e. 

is continuous, then dh 

% exis ts  and is continuous, and a2h  
If a A a f N  

dfN 
fH(f,  9 )  - (9) and f H ( f , + )  - dh (9) }are continuous in the dh 

dfN 

rectangle R: cr I A I p . These conditions a r e  sufficient 

l r /2  I 9 I 0 
1 to differentiate under the integral sign . 

TI 2 

d4 * (2 .  9 )  f p.'(fH, f ,  s in 9 ,  e )  cos 9 a a z h  
A a f N  

In general ,  it is convenient to re-formulate equation (2 .  9) in t e r m s  of 

derivatives of f Z  

such an expression. 

ra ther  than derivatives of h.  We shall  now derive N 

(2.10) 

'Brand, Advanced Calculus, Wiley, 1955. 
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- a 2 h  

A 
- a 2 h  Assuming that a A a f N  a f N a  

(2.11) 

Let f N ( A ,  h) = g(A, h).  Equation ( 2 .  11) i s  valid for monotonic 

layers and a constant magnetic field a s  a function of h. 

We will now remove the monotonic assumption. Suppose 

f N ( A ,  h) i s  a non-monotonic function, then g(A, h) i s  a non-monotonic 

function of h. 

frequencies, f ,  have hR's  which do not satisfy the equation% = 0, 

i. e .  we will not consider those frequencies whose heights of reflection 

a r e  extrema of the model. 

condition throws out a negligible number of virtual heights. 

We will only consider those h'(f) whose probe 

F o r  physically realist ic models, this 

where g ( A ,  h) is a monotonic function of h for  h h - < hR . 
1 -  
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where p '  and 2; a r e  continuous in the rectangle R: o I h 5 h , 
1 

v h e r e  h is any height such that g(A, h) is monotonic for  h 2 h . 
1 1 

have shown that the derivatives of I with respect  to the layer  constants, 

We 

Ai, exist  for  both monotonic and non-monotonic functions of h, and 

derived the explicit f o r q u l a e  for  these derivatives,  for  a constant 

magnetic field; i .e.  these formula e are  applicable to bottomside 

ionogram reduction. 

F o r  topside analysis,  we cannot ignore the variation of gyro- 

f requency with height, and shall  therefore der ive the equations fo r  the 

derivatives of I with respect  to the layer  constants for  a monotonic 

layer  (ionograms f r o m  the topside satellite Alouette indicate that this 

is genera l ly  the case )  and a variable gyro-frequencl .  

- h e r e  equation (2. 12) is a convergent improper  integral  In!- 

I(A, f )  = limit p' dh 
E -0 

0 

- a 1  a A  - -aA 8 limit E - 0  fR-€  p,' dh . 
0 
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In order to interchange the derivative operator and the l imit  operator ,  

r h R  a " dh converges one must show that 2.12 converges, and that 
*J h 

uniformly', which for the complicated integrand, p', is ra ther  

difficult. 

a A  
0 

We shall  assume that the derivation which led to equation 

(2.12) se rves  as a plausibility proof that this interchange is  p e r m i s s -  

ible.  
hR-E 

h - E  R 

h=h a A  
h=hR-E 0 

a1 - l imit  h - -  
aA E -0  Lh 

0 

Since p' and ___ a a r e  continuous in the rectangle R: o I; h 5 hR - I - >  a A  

a L A L  p. 

where for  a monotonic layer  

# o except a t  h=h max  . 
Consider: - ah 

and 

' ;3rand, Advanced Calculus, Wiley, 1955. 
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2 

where (%) (.%.) = 

a fN 

h=h -E R .. 
h=h 

0 
h =ho 

h=h - E  

- 1 R (”) ( a “Ha “)] dh h=h a fH  a h a h a h  
0 

h=h 
0 

a h  - a h R  
[=]h=h - 

and, for the ordinary r ay  

R 
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2 

since h = h(f A) and h R =  h( f2 ,  A) for the ordinary mou, N '  

a h ( f 2 , A )  - a h R  
a A  -aA but h R E  h ( fz ,A)  . 

a (hR-E 
- - 

h=h - E  a A  
R h=hR 

where we have shown that 

limit h=h - E  

h=h 
0 
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h=hR a { ( z f 1 8 f v d h - l  h=h R(w)(%) 
- 

h=h a fH tJ.l ah ah a I  = - 
0 0 

a A  I h  =h 

(2.  13a) 

Equation (2.  13a) is valid f o r  a monotonic layer  with variable gyro- 

frequency for  the ordinary mode, and can obviously be extended to non- 

monotonic layers  in the manner of equation (2. 12). 

We have derived the system of equations necessary  to reduce 

top and bottomside ionograms for f 

the "s tar t  problem". 

= 0.  We shall  now consider min 

D. "Start" Problem 

.where h is the height of reflection of the ordinary ray  at  f min min  ' 
is the height of reflection of the extraordinary ray  at f 
0 0 

and hmin min ' 
X X 

i. e .  f 2  = f  - - 
min min 

0 X 
hmin' We shall  assume that h = h  min min 

0 X 
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There are  two approaches to the s t a r t  problem: 

(1) Paul and Wright' (1963) and Doupnik (1963) assume 

that the layer is monotonic for  o L h 5 h and 

therefore derive f rom equation (2.14)  and equation 

(2 .  15) the following 

min 

f 
I -dfN dh , 

dfN = dfN dfN t s;i" dfN 
I *  

min 
h '  (f)  = 

min 0 
0 

(2.  16) 

f o r f  2 f min 

LY min 

(2.  17)  

for  o I f N  I f dh They then assume a model fo rm fo r  - 

and determine the constants f rom a sys tem of l inear equations using 

both ordinary and extraordinary virtual heights. 

their  standard techniques a r e  used to determine the r e s t  of the 

electron density distribution. 

min dfN 

Once this is done, 

(2) Titheridge (1959) suggested that one approximate p'  for 

o 1. h I h by a low o rde r  polynomial in X ,  and 

allow for the underlying ionization below f min by com- 

puting the moments of the distribution, 

min 

k fmin N (h) dh, f rom the ordinary and extraordinary 
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virtual heights. 

We shall  extend this technique using a bet ter  approximation 

which provides an improved representation of the underlying ionization. 

where x(h) = f& (h) / fz  and y = f H / f  

assuming that, for  the bottomside, dfg/dh = o 

Let p,' = ) Ai(y) XJ for  o I h S h 
u' J iniii 

and fh(h)  = g(A , . . . , A 

consider the ordinary r ay  since s imilar  resul ts  can be derived for  

h) f o r  hmin 1. h 5. hR. (We need only 
1 n' 

the extraordinary.  ) We wish a n  accurate approximation for  p ' ,  having 

a small number of t e r m s  over the interval  o L x I 0 .  8. Since this 

approximation will be integrated over the interval o S h 1. h 
min' 

the approximation must  be uniformly good over  the interval. Obviously, 

this excludes Taylor expansions which a r e  essentially point expansions, 

and suggests an  orthogonal expansion. Lanczosl recommends the 

Chebyshev polynomials a s  the orthogonal polynomials having the 

maximum ra te  of convergence, i. e .  they approximate the function over 

a n  interval,  within some delta, with fewer t e r m s  than any other 
1 

orthogonal expansion. Consider the case  f = 0 . 0 .  Then p '  = 
H my 

m 
and we wish to obtain an expansion of the fo rm p , I  = n=o C a n Tn(X) 

Lanczos, Applied Analysis, Prent ice  Hall, 1961. 1 
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and Tn(X) a r e  the Chebyshev polynomials over the interval 

commonly called the Chebyshev polynomials of the f i r s t  kind. 

-1 ,< X 1 ,  

= is defined for o 5 X < 1.  Normalizing the interval of 
d-r--K 

approximation, o 2 X 5 0 . 8 ,  le t  X = 0 . 8  X for o L X 1. 1 
1 1 

where o I X L 1. Now transform to the 1 = 
-8y 1 

I 

[ - 1 , 1 ]  by letting X = 2X - 1 for  O S  X L 1.  Then - 1  2 X 
2 1 1 2 

where -1 L X i 1 1 = d 1 - 0 . 4 ( X  t 1)  2 
2 

then 

interval 

<, 1 and 

Once the Chebyshev expansion has  been obtained i t  can be 

rewritten a s  a polynomial in X.  We then have the following: 

(2 .  18) 

min 0 h=o h 

Where the b a r e  functions of y = f / f  in general .  Equation (2.  18) 
n H c 

Imin holds f o r  all frequencies, f ,  such that f 2 - 
4 0 . 8  

min h h m bnf hn hR m b  

n=o f 2  min n=o f 2  
h '  ( f )  = Jomin ( 2 T) dh t lh p ' d h  = 1 Ln f &  (h) dh t 

t f R  p '  dh 

min h 
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n b h 

fN (h) dh = cn and - = Dn(f) Let  lomin z n  
f Z n  

(2. 19) 
n=o min 

Where the Dn(f) a r e  known functions of f .  We now choose a model for  

2 
is  the height of the maximum (hmax fN (h) for  hmin - < h S hmax 

electron density of the layer).  One now must determine the model 

constants in addition to the c 

for  the extraordinary virtual heights. 

. A similar equation can be derived 

One then may use these two 

n 

equations to determine the unknown constants in the manner descr ibed  

in 11-C. 

function of h for  h 2. hmin, one may rewri te  equation (2. 19) in the 

following manner: 

Also, i f  the ionogram indicates that fN(h) is a monotonic 

The methods of Paul  and Wright, Titheridge, o r  DouDnik may now be 
m 

used. Since one can only determine a few t e r m s  of D,(f)cn , 
n=o 

i. e .  m typically 3 or  4, f rom the ordinary and extraordinary virtual 

heights, i t  is imperative that the expansion of p,I be a quickly convergent 

one, i. e .  a Chebyshev expansion. It is obvious f r o m  the above 

discussion that no model assumption has  been made in the unseenrange 

(f L fmin) and therefore this approach is  inherently superior  to  the 
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existing "start" solutions which do make these assumptions.  

need only examine the resul ts  of the model studies of Doupnik (1963) 

to realize the sensitivity of model approaches below f min to  the 

particular model choosen. 

monotonic and non-monotonic profiles below f min'  

One 

The above technique will work for  both 

Not  only do the cn enable us  to compensate for  low lying 

ionization, but they also determine uniquely the monotonic profile 

which produces the co r rec t  retardation up to h min '  

i f  the profile is monotonic below f 

f r o m  the c 

Consequently, 

we can determine this profile min' 

in the following manner: for  a monotonic profile,  n 

exists,  NOW let dh 

df k - 

f' then -1 L 5 1. 1 m in 

2 d€; dh - 2 dh 

f x- - - - -  .*. d5 = 
f 2  min df k min 

f min 2 '  dh 
dh - - - -  

df & - x  2 

r r  
r=o  

where the Pr a r e  the Legendre polynomials, and 

(2.  20) 

2 r + 1  
bj 1' d5 - dh 5' d5 

- 1  
ar  - 2 

j =o 
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f 2  f g i ' d G = S  min 

0 min - 1  

r 
a = -  
r 2 

j=o 

dh f 2 1  2 
min 

N dfN 
where 

min =0 min dfN 

laye r 

j=o J = o  'min 

(2.21) 

(2 .22)  

-min 2 j  
Where c = fN (h) dh for  a monotonic layer .  Given the 4 
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dh 2 

we can expand in a Legendre expansion f o r  o 2 f N -  < frnin 

df N 
3 

2 
dh dR where h(fmin) = c . and h(fh) = 0 

min 

E .  "Vallev" Problem 

The technique s which we have developed thus far allow us to 

approach the valley problem in one of two ways. 

suggested by Wright (private communication!, which is to t r ea t  the 

valley problem a s  a "low frequency cut off" problem where f min 

now the cri t ical  frequency of the lowest maximum of ion density. 

other approach is t o  assume a non-monotonic function of h and 

attempt to determine the constants in the manner prescr ibed in pa r t  

C. Which i s  the more  feasible can only be determined by model 

studies . 

One way is that 

is 

The 
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111. MODEL STUDIES 

A .  Purpose of Model Studies 

Model studies were conducted to tes t  the method developed 

Ordinary virtual heights were computed f r o m  a parabolic in  11-C. 

layer ,  i . e .  

(h-hm)2 

a2  
f N  2 = f p  ( 1 -  (3 .1)  

f p  = penetration frequency of the layer  

h = height of maximum electron density m -  

a semi-thickness of the layer .  

We then attempted to derive the layer constants for  this model f r o m  

the computed virtual heights. 

a parabola in h, the problem is how LO make initial es t imates  

of the layer  parameters .  

ionogram. The simplest  way to determine h and a (probably 

the worst)  is  to guess them. 

determine the effects of the initial values of the layer  constants on the 

final values. A s  with most  minimization routines,  this routine will 

be trapped by the first relative minimum it finds. 

m o r e  r e - runs  start ing with different initial values of the pa rame te r s  

is recommended as a standard procedure where possible. 

procedure will find a new relative minimum, o r  confirm the accuracy to 

which the original one has  been located. It should be noted a t  this 

point that the technique developed in 11-C is one for  determining a 

model for  the whole layer .  

Having chosen the functional fo rm,  i .  e .  

fp ,  of course,  can be read off the 

m 

This was done because we wished to 

Therefore,  one or  

This 

Schmerling has  pointed out that, in general ,  
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one will not be able to assume a simple functional fo rm which will 

f i t  the whole layer .  

dure a s  used by Paul and Wright and Doupnik is obvious and hence 

But the extension of 11-C to a lamination proce-  

will not be given. F o r  this tes t ,  four  se t s  of "guessed" layer  constants 

were used with the same model. In addition, to determine the effect of 

"noise" on the method, three se t s  of input data were used: 

virtual heights, virtual heights rounded to one km,  and virtual heights 

exact 

rounded to five km. One would also like to know the minimum number 

of virtual heights which will give accurate resul ts ,  and, the number 

of input virtual heights were,  therefore ,  varied f rom six to twelve. 

Only ordinary virtual heights were used. 

B.  Numerical Techniques 

One must  numerically evaluate integrals of the fo rm t R p '  dh 

and p'  g(h)dh; since we do not wish 

monotonic models, we cannot make the 

Initially Gaussian Quadrature was used 

but the integrand goes to infinity a t  the 

JO 

to r e s t r i c t  ourselves to 

substitution dh = - dh dfk , 

to pe r fo rm the integration, 

df & 

upper l imit;  therefore ,  the 

standard Gaussian Quadrature formulae a r e  inadequate (inadequate in 

the sense that they require large amounts of computer t ime) .  

1 Budden has shown that 

'Budden (op. cit) 
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where p is finite and continuous over the entire range of integration 

p dh was integrated using an extended five point Gaussian s"" 0 

Quadrature method with ten intervals,  

To evaluate f p. dh, we used the finite difference 

formula.  

where f = f + 0.001 ; f = f - 0.091 . Corripariiig the virtual 

heights given by this method with those obtained analytically (a pa ra -  

bolic layer  in h with no magnetic f ie ld) ,  the e r r o r  was on the average 

about 

2 1 

k m  over the complete range of o I f I f p  . 
The program which we used is "A Generalized Leas t  Squares  

P r o g r a m  for  the I. B.'M. 7090 Computer' ' by M. H. Lietzke, as 

modified by Yoder of this University for the I. B. M. 7074. This 

p rogram requires  only the function and the par t ia l  derivatives of the 

function with respect  t o  the coefficients. In our case  the function is 

(h -h,I2 
where f&(h) = f 2  

a2 P 

1 
and hR = h - a (1 - f2 / f f , ) '  ; let ho = h m m - a 
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C. Results and Discussion of the Model Studies 

The se t s  of initial guesses used were: 

( fp  = 6 . 0 ,  hm = 156, a = 134); 

( f p  = 6 . 0 ,  hm = 217, a = 22); 

actual values of the model constants were f 

a = 50. O ,  in all cases ,  f = 1.682 and 8 = O ,  52360. 

( f p  = 6 . 0 ,  h = 453, a = 38); 

( f p  = 6.50,  hm = 350, a = 100) 

P -  

m 

. The 

- 6 . 0 ,  hm = 300.0,  

H 

A l l  se t s  of data converged to the actual layer constants within 

five iterations (see tables, where Res = difference between calculated 

and observed virtual heights). The resul ts  indicate the following: 

(a) Convergence was unaffected by "guessing" values of the 

layer constants. 

The minimum number of points which could be used with (b) 

consistent resul ts  was six. 
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Paramete r  Values Number of 
Ite rations fP  h a m 

12 2 
23 (Res.) i  

il= 

0 6.0000 21 7.00 32.000 0.62243 x l o 5  

1 6.0168 300. 30 50 .600 0.51117 x 10' 

2 6.0067 299.64 50.606 0.56060 x 10' 

3 6.0072 300.27 50 .606 0. 51780 x 10' 

Table 1. Determination of parabolic layer  constants, using 

1 2  data points rounded to 1 km by the methsd cf 

least  squares .  

Number 6f 
Iterations 

0 

1 

2 

3 

4 

5 

fP 

Paramete r  Values 1 2  2 

m h a Z- (Res.  )I 
i=i 

6. 5000 350.00 100.00 0. 36079 x l o 4  

5.8269 284.86 34. 822 0 .44207 x lo3 

5.9354 297.42 47.540 0.43587 x 10' 

5. 9964 299.09 50. 229 0. 15599 x 10' 

6 .0074 299.50 50. 622 0. 92427 x 10' 

6.0073 299.50 50. 627 0. 92499 x 10' 

Table 2. Determination of parabolic layer  constants, using 

12 data points rounded to 1 km, by the method of 

least  squares .  
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Paramete r  Values 6 
C (Res.): Number of 

Ite rations a m i=i h f P  

0 6 . 0 0 0  4 5 3 . 0 0  3 8 . 0 0 0  0 .  15033 x l o 6  

1 5 . 9 9 9  2 9 9 . 0 9  4 9 . 8 7 2  0 . 4 8 3 4 2  x 10’ 

2 5 . 9 9 9  2 9 8 . 8 8  4 9 . 8 7 0  0 . 4 8 0 2 6  x 10’ 

3 5 . 9 9 9  2 9 9 . 0 8  4 9 . 8 7 2  0 . 4 7 7 3 7  x 10’ 

Table 3 .  Determination of parabolic layer constants, 

using 6 data points rounded to 5 km, by the 

method of least  squares .  

Pa rame te r  Values 6 
Z (Res.); Number of 

Iterations i=l a m h f P  

0 6 . 0 0 0 0  1 5 6 . 0 0  1 3 4 . 0 0  0 .  20066 x l o 6  

1 5 . 9 9 9 9  2 9 9 . 0 9  49 .  873  0 . 4 8 3 2 9  x 10’ 

2 5 . 9 9 9 9  2 9 8 . 8 9  4 9 . 8 6 9  0 . 4 8 0 0 3  x 10’ 

3 5 .  9999 2 9 9 . 0 8  49. 873  0 . 4 7 7 3 8  x 10’ 

Table 4. Determination of parabolic layer constants, 

using 6 data points rounded to 5 km, by the 

method of least  squares .  



- 4 1  - 

(c) Convergence was not affected by noise in the data, i. e .  

since our system is overdetermined the effects of noise 

a r e  minimi zed. 

The method is most  sensitive to the parameter  f P' (d) 

Remembering that we perform a Taylor expansion of I about 

the initial parameter  values and drop all t e r m s  higher than first 

order ,  we a r e  somewhat surpr ised that all of the se t s  of "guesses" 

converge, since in some cases  the correct ions were of the same order  

of magnitude a s  the oAi. The explanation is a s  follows: 

I ( fp ,hm,a , f )  = Io t (z) A f p  t (gm)o Ahm t (2) A a  
a f P  0 0 

t . . . t higher o rde r  t e r m s  in 

Afp, Ahm, Aa 

Where I is I evaluated a t  the point (fpo, h,,, ao) and the par t ia l  

derivatives a r e  s imilar ly  defined. 

neglected if  a suitable combination of the following two conditions a r e  

satisfied.  

0 

The higher o rde r  t e r m s  may  be 

(1) ' A b .  1 << M where j = 1, 2,  3 and M. is some upper bound 
J '  j '  J 

(letting b = f p J  b 

M o r r i s  on ( 1 9 5 9). 

= hm, and b = a) How M. is chosen is given by 
1 2 3 J 

<< 1.  This condition depends on the functional f o r m  
(2) Iabi bk 1 

2 2 
of fN (h) . In the model studies,  f (h) = N 
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h r R  
p.' dh 

0 
m - a t  j h  

Then I (fp,  hm, a ,  f )  = h 

2 where hR = h - a and ho = h m - a . Since fN(h)  i s  m 

a monotonic function of h ,  we can consider the inverse function. 

dh - a /  z where h = h - a 
df m 

akl 

a f P  

But '7 > 0 for  k 2 2. But our initial values of f p , f p  , were 
0 

quite close to the actual fp ,  i. e .  

Afp = 0 . 5  for  the fourth case .  

model has the property that it is l inear in two of the three parameters ,  

a property which makes this functional f o r m  particularly appealing 

fo r  use in a lamination method. 

Afp = 0 in three tes t s  and 

We therefore see that the parabolic 
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IV. SUMMARY AND CONCLUSIONS 

The problem is to determine under what conditions equation 

(1. 1) and equation (1. 2) uniquely specify the plasma frequency a s  a 

function of height, f (h); and, providing that these restr ic t ions a r e  

satisfied,  to  determine what numerical  techniques which a r e  compat- 

N 

ible with reasonable physical assumptions.  a r e  available for  inverting 

these equations. 

min > 0 ,  neither equation alone allows a unique 

For  fmin > 0,  both equations 

F o r  f 

solution f o r  any dip angle, 8 .  

together do not give a unique solution for  the case  of longitudinal - 

propagation, 8 = 0 , i f  the z-trace and x- t race  a r e  used. 0 F o r  8 > Oo 

and fmin > 0 ,  we have assumed that the solution is unique when the 

x- t race  and o- t race  a r e  used. 

F o r  fmin = 0 o r  when either vir tual  height t race  can be 

extrapolated to zero,  we have presented an i terative method based on 

minimizing the sum of the squared residuals between the observed 

and calculated virtual heights, where the calculated virtual heights 

a r e  derived f rom a chosen functional form.  

is that the independent variable is h, whereas in other  methods the 

independent variable is cp(f 1. Since h is the independent variable,  we 

need no longer res t r ic t  ourselves to monotonic functions of h,  and can 

easi ly  include the variation of the gyrofrequency, fH, with height (as  we 

must  on the topside). 

i terat ive technique, and, consequently, is only feasible if a high speed 

computer is available. 

Doupnik and Paul  and Wright. 

The power of this approach 

N 

The weakness of this approach is that it is an  

Even then it is slow compared to the methods of 

How to determine the initial pa rame te r  
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values i s  also a problem. 

solution which i s  to crudely determine f 

some manual technique, e .  g. sl ider method of Schmerling and 

Ventrice (1 958). 

Schmerling has  suggested a reasonable 

(h) f r o m  the ionogram using N 

Titheridge (1959) has  suggested a solution for  the "start" 

problem which we have extended. 

superior to the model approaches of Paul and Wright (1963). 

Doupnik (1963), e tc .  since it does not make a model assumption for  

the underlying ionization. 

This solution i s  inherently 

We have developed a technique for the reduction of ionograms 

to electron density height profiles which is based on a least-squares  

method, and has many advantages over the other techniques now in use .  

No  attempt has been made to develop this to the stage where i t  is 

suitable for the routine reduction of large numbers of ionograms, but 

we feel  that this approach is very promising for this purpose, and 

suggest that further studies should be continued a s  follows: 

(1) Model studies to refine the low-frequency solution given 

on page 27 .  

(2)  Model studies of the valley problem, where both monotonic 

and non-monotonic functions of h a r e  used a s  discussed on page 34. 

(3)  Model studies of the topside (above F 2  peak) where the 

gyro-frequency variation i s  included a s  given on page 23. 

(4) Model studies on the effect of the initial guesses  on conver- 

gence, for  models other than a parabola. 

(5) Investigation of the uniqueness of the solution for  f > o  min 

and 8 > 0 .  
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(6) Investigation of more efficient programming techniques 

to reduce computer t ime. 



- 46 - 

BIBLIOGRAPHY 

Appleton, E .  V. , Some Notes on Wireless  Methods of Investigating 
the Electrical  Structure of the Upper Atmosphere (11), P r o c .  P h y s .  
SOC. ,  42, 321, 1930. 

Appleton, E .  V .  , The Bakerian Lecture-Regularities and I r r egu-  
lar i t ies  in the Ionosphere - I, P r o c .  Roy. SOC. 

Bowhill and Schmerling, The Distribution of Electrons in  the 
Ionosphere, Advances in Electronics and Electron Phys ics ,  
15, Academic P r e s s ,  New York, 1961. 

- 162, 451, 1937. 

- 
Brand, L.  , Advanced Calculus, John Wiley and Sons, New York, 
1955. 

Budden, K.  G . ,  Radio Waves in the Ionosphere, Cambridge 
University P r e s s ,  1961. 

de Groot, W e  , Some Remarks on the Analogy of Certain Cases  
of Propagation of Electromagnetic Waves and the Motion of a 
Par t ic le  in a Potential Field,  Phi l .  Mag. , c 10, 521, 1930. 

Doupnik, J 
True Heights, presented at  URSI, Spring, 1963. 

R.  , A Flexlble Method to Reduce Virtual Heights to 

Hildebrand, F .  B., Introduction to Numerical Analysis, McGraw- 
Hill, New York., 1956. 

Kunz, K . ,  Numerical Analysis, McGraw-Hill, New York, 1957. 

Lanczos, C 
Cliffs, New J e r s e y ,  1956. 

Applied Analysis, Pren t ice  Hall, Englewood 

Lietzke, M. H. A Generalized Leas t  Squares P r o g r a m  fo r  the 
IBM 7090 ComDuter, Oak. Ridge National Laboratory - 3259 

Morrison, D. , A Method for  Non-linear Minimization Problems,  
Space Technology Laborator ies  , 1959. 

Nielsen, K .  , Methods in Numerical Analysis, Macmillan Company, 
New York.. 1956. 

LI 
Paul ,  A .  K.  , Aktive Hockfrequenzespektrometer f u r  Ionosph8rische 
Echolotung, A .E .U .  , - 14, 468-476, 1960. 

Paul ,  A .  K. 
Obtaining Ionospheric N(h)  Prof i les  and Their Bearing on the 
Structure of the Lower F Region, J . G . R . ,  - 19, 5413, 1963. 

and J. W .  Wright, Some Results of a New Method f o r  



- 47 - 
Rydbeck, 0. E . ,  A Theoretical Survey of the Possibil i t ies of Determi-  
ning the Distribution of the F r e e  Xlectrons in the Upper Atmosphere, 
T r a n s . ,  Chalmers Univ. of Technology, No. 3, 1942a. 

Rydbeck, 0. E . ,  The Propagation of Electromagnetic Waves in  an 
Ionized Medium and the Calculation of the True Heights of the 
Ionized Lavers  of the Atmosphere. T e r r .  Mae . ,  47, 219, 1942b. 

Schmerling, E .  R . ,  The Reduction of h'-f Records to Electron- 
Densitv-Height Prof i les ,  Ionosphere Research Laboratorv Scientific 

v * 

Report 94, The Pennsylvania State University, 1957. 

Shinn and Whale, Group Velocities and Group Heights f r o m  the 
Magneto-ionic Theorv, J .  Atmos. T e r r .  P h v s . ,  2, 85-105, 1952. 

Storey, C .  R .  O . ,  The Joint Use of the  Ordinary and Extraordinary 
Virtual Height Curves in Determining Ionospheric Layer  Prof i les ,  
N.B.S. Journal  of Kesearch, 1960. 

Thorn-as, J. O., The Distribution of Electrons in the Ionosphere, 
P r o c .  IRE, 47, 162-175, 1959. - 

, and Long, Titheridge Coefficients f o r  the Polynomial 
Method of Deducing Electron Density Prof i les  f r o m  Ionograms, 
J .  of R e s . ,  N.B.S . ,  67D, 1, 79-82, 1963. - -  

, The Calculation of Electron Density Prof i les  f r o m  
Topside Sounder Records,  presented at URSI, Spring, 1963. 

Titheridge, J .  E .  , The Calculation of Real and Virtual Heights 
of Reflection in the Ionosphere, J .  Atmos. Te r re s t .  Phys . ,  17, 
96-109, 1959. 

- 

, The Use of Extraordinary Ray in the Analysis of 
Ionospheric Records,  J .  Atmos. Ter res t .  P h y s . ,  - 17, 110-125, 
1959. 

, Ionization Below the Night-time F Layer ,  J . Atmos . 
Ter res t .  Phys . ,  - 17, 126-133, 1959. 

, A New Method for  the Analysis of Ionospheric h '(f)  
Records,  J .  Atmos. Te r re s t .  Phys . ,  - 21, 1-12, 1961. 

, The Analysis of Ionospheric h ' ( f )  Records Using 
the Phase  Hefractive Index, J .  Atmos. Te r re s t .  Phys.  , - 25, 43-50, 
1963. 

Unz, H. , A Solution of the Integral Equation h ' ( f )  = 
J .  Atmos. Te r re s t .  Phys . ,  - 21, 40, 1961. 

p' ( f ;  fo )  dz (fo) ,  



- 48 - 

Ventrice and Schmerling, The Determination of Schmerling Co- 
efficients by Digital Computer Techniques _Including Tabulated 
Values for Magnetic Dip Angles Between 0" and 80", Ionosphere 
Research Laboratory Scientific Report 106, The Pennsylvania 
State University, 1958. 


